elliptic2d.f90 Source File


This file depends on

sourcefile~~elliptic2d.f90~~EfferentGraph sourcefile~elliptic2d.f90 elliptic2d.f90 sourcefile~pdeelliptic.f90 PDEelliptic.f90 sourcefile~elliptic2d.f90->sourcefile~pdeelliptic.f90 sourcefile~mumps_real32.f90 mumps_real32.f90 sourcefile~pdeelliptic.f90->sourcefile~mumps_real32.f90 sourcefile~mpimod.f90 mpimod.F90 sourcefile~pdeelliptic.f90->sourcefile~mpimod.f90 sourcefile~phys_consts.f90 phys_consts.F90 sourcefile~pdeelliptic.f90->sourcefile~phys_consts.f90 sourcefile~mpimod.f90->sourcefile~phys_consts.f90

Contents

Source Code


Source Code

submodule (PDEelliptic) elliptic2d

implicit none

contains

module procedure elliptic2D_polarization

!------------------------------------------------------------
!-------SOLVE IONOSPHERIC POTENTIAL EQUATION IN 2D USING MUMPS
!-------INCLUDES FULL OF POLARIZATION CURRENT, INCLUDING CONVECTIVE
!-------TERMS.  VELOCITIES SHOULD BE TRIMMED (WITHOUT GHOST CELLS).
!-------THIS VERSION OF THE *INTEGRATED* POTENTIAL SOLVER OBVIATES
!-------ALL OTHERS SINCE A PURELY ELECTRSTATIC FORM CAN BE RECOVERED
!-------BY ZEROING OUT THE INERTIAL CAPACITANCE.
!-------
!-------THIS FORM IS INTENDED TO  WORK WITH CURVILINEAR MESHES.
!-------NOTE THAT THE FULL GRID VARIABLES (X%DX3ALL, ETC.) MUST
!-------BE USED HERE!!!
!-------The equation solved by this subroutine is:
!-------
!-------  d/dx2(A dV/dx2) + d/dx3(A' dV/dx3) + B dV/dx2 - C dV/x3 + ...
!-------  d/dx2(D d/dt(dV/dx2)) + d/dx3(D d/dt(dV/dx3)) + ...
!-------  d/dx2( D*v2 d^V/dx2^2 + D*v3*d^2V/dx3/dx2 ) + ...
!-------  d/dx3( D*v2 d^2V/dx2/dx3 + D*v3 d^2V/dx3^2 ) = srcterm
!-------
!-------  for GEMINI:  A=SigP2, A'=SigP3, B=d/dx3(SigH), C=d/dx2(SigH),
!-------               D=Cm
!------------------------------------------------------------

real(wp), dimension(1:size(SigP2,1),1:size(SigP2,2)) :: SigPh2    !I'm too lazy to recode these as SigP2h2, etc.
real(wp), dimension(1:size(SigP2,1),1:size(SigP2,2)) :: SigPh3
real(wp), dimension(1:size(SigP2,1),1:size(SigP2,2)) :: Cmh2
real(wp), dimension(1:size(SigP2,1),1:size(SigP2,2)) :: Cmh3

real(wp) :: coeff    !coefficient for calculating polarization terms
integer :: ix2,ix3,lx2,lx3    !this overwrites the
integer :: lPhi,lent
integer :: iPhi,ient
integer, dimension(:), allocatable :: ir,ic
real(wp), dimension(:), allocatable :: M
real(wp), dimension(:), allocatable :: b
real(wp) :: tstart,tfin

integer :: utrace

type(MUMPS_STRUC) :: mumps_par

!ONLY ROOT NEEDS TO ASSEMBLE THE MATRIX
!if (myid==0) then
lx2=size(SigP2,1)    !note that these are full-grid sizes since grid module globals are not in scope
lx3=size(SigP2,2)
lPhi=lx2*lx3
!      lent=5*(lx2-2)*(lx3-2)+2*lx2+2*(lx3-2)    !static model; left here as a reference
lent=17*(lx2-2)*(lx3-2)+2*lx2+2*(lx3-2)-3*2*(lx2-2)-3*2*(lx3-2)
!! interior+boundary-x3_adj-x2_adj.  Note that are 3 sets of entries for each adjacent point
allocate(ir(lent),ic(lent),M(lent),b(lPhi))
if (debug) print *, 'MUMPS will attempt a solve of size:  ',lx2,lx3
if (debug) print *, 'Total unknowns and nonzero entries in matrix:  ',lPhi,lent


!PREP INPUT DATA FOR SOLUTION OF SYSTEM
SigPh2(1,:)= 0
SigPh2(2:lx2,:)=0.5d0*(SigP2(1:lx2-1,:)+SigP2(2:lx2,:))
!! note the different conductiances here ot be associated with derivatives in different directions
SigPh3(:,1)= 0
SigPh3(:,2:lx3)=0.5d0*(SigP3(:,1:lx3-1)+SigP3(:,2:lx3))
Cmh2(1,:)= 0
Cmh2(2:lx2,:)=0.5d0*(Cm(1:lx2-1,:)+Cm(2:lx2,:))
Cmh3(:,1)= 0
Cmh3(:,2:lx3)=0.5d0*(Cm(:,1:lx3-1)+Cm(:,2:lx3))


!------------------------------------------------------------
!-------DEFINE A MATRIX USING SPARSE STORAGE (CENTRALIZED
!-------ASSEMBLED MATRIX INPUT, SEE SECTION 4.5 OF MUMPS USER
!-------GUIDE).
!------------------------------------------------------------
!LOAD UP MATRIX ELEMENTS
M(:)= 0
b = pack(srcterm,.true.)           !boundaries overwritten later, polarization terms also added later.
ient=1

loopx3: do ix3=1,lx3
  loopx2: do ix2=1,lx2
    iPhi=lx2*(ix3-1)+ix2     !linear index referencing Phi(ix2,ix3) as a column vector.  Also row of big matrix

    if (ix2==1) then
      !! BOTTOM GRID POINTS + CORNER
      ir(ient)=iPhi
      ic(ient)=iPhi
      M(ient)=1d0
      b(iPhi)=Vminx2(ix3)
      ient=ient+1
    elseif (ix2==lx2) then
      !! TOP GRID POINTS + CORNER
      ir(ient)=iPhi
      ic(ient)=iPhi
      M(ient)=1d0
      b(iPhi)=Vmaxx2(ix3)
      ient=ient+1
    elseif (ix3==1) then
      !! LEFT BOUNDARY
      ir(ient)=iPhi
      ic(ient)=iPhi
      M(ient)=1d0
      b(iPhi)=Vminx3(ix2)
      ient=ient+1
    elseif (ix3==lx3) then
      !! RIGHT BOUNDARY
      ir(ient)=iPhi
      ic(ient)=iPhi
      M(ient)=1d0
      b(iPhi)=Vmaxx3(ix2)
      ient=ient+1
    else
      !! INTERIOR LOCATION
      !> ix2-1,ix3-2 grid point
      coeff=-1d0*Cm(ix2,ix3-1)*v2(ix2,ix3-1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3-1)+dx3all(ix3))*(dx2all(ix2)+dx2all(ix2+1)) )
      if (ix3==2) then    !out of bounds, use nearest BC, and add to known vector
        b(iPhi)=b(iPhi)-coeff*Vminx3(ix2-1)
      else    !in bounds, add to matrix
        ir(ient)=iPhi
        ic(ient)=iPhi-2*lx2-1

        M(ient)=coeff    !d/dx3( Cm*v2*d^2/dx3dx2(Phi) )

        ient=ient+1
      end if


      !> ix2,ix3-2 grid point
      coeff=-1d0*Cm(ix2,ix3-1)*v3(ix2,ix3-1)/( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3-1)*dx3iall(ix3-1)) )
      if (ix3==2) then
      !! bit of intentional code duplication here and in the following sections to keep things organized in a way I can debug...
        b(iPhi)=b(iPhi)-coeff*Vminx3(ix2)
      else
        ir(ient)=iPhi
        ic(ient)=iPhi-2*lx2

        M(ient)=coeff    !d/dx3( Cm*v3*d^2/dx3^2(Phi) ) term

        ient=ient+1
      end if


      !> ix2+1,ix3-2 grid point
      coeff=Cm(ix2,ix3-1)*v2(ix2,ix3-1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3-1)+dx3all(ix3))*(dx2all(ix2)+dx2all(ix2+1)) )
      if (ix3==2) then
        b(iPhi)=b(iPhi)-coeff*Vminx3(ix2+1)
      else
        ir(ient)=iPhi
        ic(ient)=iPhi-2*lx2+1

        M(ient)=coeff    !d/dx3( Cm*v2*d^2/dx3dx2(Phi) )

        ient=ient+1
      end if


      !> ix2-2,ix3-1
      coeff=-1d0*Cm(ix2-1,ix3)*v3(ix2-1,ix3)/ &
      ( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2-1)+dx2all(ix2))*(dx3all(ix3)+dx3all(ix3+1)) )
      if (ix2==2) then
        b(iPhi)=b(iPhi)-coeff*Vminx2(ix3-1)
      else
        ir(ient)=iPhi
        ic(ient)=iPhi-lx2-2

        M(ient)=coeff    !d/dx2( Cm*v3*d^2/dx2dx3(Phi) )

        ient=ient+1
      end if


      !!!ix2,ix3-1 grid point in ix2,ix3 equation
      ir(ient)=iPhi
      ic(ient)=iPhi-lx2

      M(ient)=SigPh3(ix2,ix3)/(dx3iall(ix3)*dx3all(ix3))+gradSigH2(ix2,ix3)/(dx3all(ix3)+dx3all(ix3+1))    !static terms

      coeff=Cmh3(ix2,ix3)/(dt*dx3iall(ix3)*dx3all(ix3))
      M(ient)=M(ient)+coeff   !polarization time derivative terms
      b(iPhi)=b(iPhi)+coeff*Phi0(ix2,ix3-1)
      !! add in polarziation terms that include previous time step potential at this grid point

      coeff=Cm(ix2,ix3-1)*v3(ix2,ix3-1)/( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3)*dx3iall(ix3-1)) )+ &
      Cm(ix2,ix3-1)*v3(ix2,ix3-1)/( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3-1)*dx3iall(ix3-1)) )
      M(ient)=M(ient)+coeff   !d/dx3( Cm*v3*d^2/dx3^2(Phi) ) term

      coeff=Cm(ix2+1,ix3)*v3(ix2+1,ix3)/ &
      ( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2+1)+dx2all(ix2+2))*(dx3all(ix3)+dx3all(ix3+1)) )+ &
      Cm(ix2-1,ix3)*v3(ix2-1,ix3)/ &
      ( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2-1)+dx2all(ix2))*(dx3all(ix3)+dx3all(ix3+1)) )
      M(ient)=M(ient)+coeff   !d/dx2( Cm*v3*d^2/dx2dx3(Phi) )

      ient=ient+1


      !> ix2+2,ix3-1 grid point
      coeff=-1d0*Cm(ix2+1,ix3)*v3(ix2+1,ix3)/ &
      ( (dx2all(ix2+1)+dx2all(ix2+2))*(dx2all(ix2)+dx2all(ix2+1))*(dx3all(ix3)+dx3all(ix3+1)) )
      if (ix2==lx2-1) then
        b(iPhi)=b(iPhi)-coeff*Vmaxx2(ix3-1)
      else
        ir(ient)=iPhi
        ic(ient)=iPhi-lx2+2

        M(ient)=coeff    !d/dx2( Cm*v3*d^2/dx2dx3(Phi) )

        ient=ient+1
      end if


      !> ix2-2,ix3 grid point
      coeff=-1d0*Cm(ix2-1,ix3)*v2(ix2-1,ix3)/( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2-1)*dx2iall(ix2-1)) )
      if (ix2==2) then
        b(iPhi)=b(iPhi)-coeff*Vminx2(ix3)
      else
        ir(ient)=iPhi
        ic(ient)=iPhi-2

        M(ient)=coeff
        !! d/dx2( Cm*v2*d^2/dx2^2(Phi) ) term

        ient=ient+1
      end if


      !> ix2-1,ix3 grid point
      ir(ient)=iPhi
      ic(ient)=iPhi-1

      M(ient)=SigPh2(ix2,ix3)/(dx2iall(ix2)*dx2all(ix2))-gradSigH3(ix2,ix3)/(dx2all(ix2)+dx2all(ix2+1))    !static

      coeff=Cmh2(ix2,ix3)/(dt*dx2iall(ix2)*dx2all(ix2))
      M(ient)=M(ient)+coeff    !pol. time deriv.
      b(iPhi)=b(iPhi)+coeff*Phi0(ix2-1,ix3)    !BC's and pol. time deriv.

      coeff=Cm(ix2-1,ix3)*v2(ix2-1,ix3)/( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2)*dx2iall(ix2-1)) )+ &
      Cm(ix2-1,ix3)*v2(ix2-1,ix3)/( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2-1)*dx2iall(ix2-1)) )
      M(ient)=M(ient)+coeff    !d/dx2( Cm*v2*d^2/dx2^2(Phi) ) term

      coeff=Cm(ix2,ix3+1)*v2(ix2,ix3+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3+1)+dx3all(ix3+2))*(dx2all(ix2)+dx2all(ix2+1)) )+ &
      Cm(ix2,ix3-1)*v2(ix2,ix3-1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3-1)+dx3all(ix3))*(dx2all(ix2)+dx2all(ix2+1)) )
      M(ient)=M(ient)+coeff     !d/dx3( Cm*v2*d^2/dx3dx2(Phi) )

      ient=ient+1


      !!!ix2,ix3 grid point (main diagonal)
      ir(ient)=iPhi
      ic(ient)=iPhi

      M(ient)=-1d0*SigPh2(ix2+1,ix3)/(dx2iall(ix2)*dx2all(ix2+1)) &
      -1d0*SigPh2(ix2,ix3)/(dx2iall(ix2)*dx2all(ix2)) &
      -1d0*SigPh3(ix2,ix3+1)/(dx3iall(ix3)*dx3all(ix3+1)) &
      -1d0*SigPh3(ix2,ix3)/(dx3iall(ix3)*dx3all(ix3))    !static

      coeff=-1d0*Cmh2(ix2+1,ix3)/(dt*dx2iall(ix2)*dx2all(ix2+1)) &
      -1d0*Cmh2(ix2,ix3)/(dt*dx2iall(ix2)*dx2all(ix2)) &
      -1d0*Cmh3(ix2,ix3+1)/(dt*dx3iall(ix3)*dx3all(ix3+1)) &
      -1d0*Cmh3(ix2,ix3)/(dt*dx3iall(ix3)*dx3all(ix3))
      M(ient)=M(ient)+coeff    !pol. time deriv.
      b(iPhi)=b(iPhi)+coeff*Phi0(ix2,ix3)    !BC's and pol. time deriv.

      coeff=Cm(ix2+1,ix3)*v2(ix2+1,ix3)/( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2+1)*dx2iall(ix2+1)) )+ &
      (-1d0)*Cm(ix2-1,ix3)*v2(ix2-1,ix3)/( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2)*dx2iall(ix2-1)) )
      M(ient)=M(ient)+coeff    !d/dx2( Cm*v2*d^2/dx2^2(Phi) ) term

      coeff=Cm(ix2,ix3+1)*v3(ix2,ix3+1)/( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3+1)*dx3all(ix3+1)) )+ &
      (-1d0)*Cm(ix2,ix3-1)*v3(ix2,ix3-1)/( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3)*dx3iall(ix3-1)) )
      M(ient)=M(ient)+coeff    !d/dx3( Cm*v3*d^2/dx3^2(Phi) ) term

      ient=ient+1


      !!!ix2+1,ix3 grid point
      ir(ient)=iPhi
      ic(ient)=iPhi+1

      M(ient)=SigPh2(ix2+1,ix3)/(dx2iall(ix2)*dx2all(ix2+1))+gradSigH3(ix2,ix3)/(dx2all(ix2)+dx2all(ix2+1))    !static

      coeff=Cmh2(ix2+1,ix3)/(dt*dx2iall(ix2)*dx2all(ix2+1))
      M(ient)=M(ient)+coeff    !pol. time deriv. terms
      b(iPhi)=b(iPhi)+coeff*Phi0(ix2+1,ix3)    !BC's and pol. time deriv.

      coeff=-1d0*Cm(ix2+1,ix3)*v2(ix2+1,ix3)/( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2+2)*dx2iall(ix2+1)) )+ &
      (-1d0)*Cm(ix2+1,ix3)*v2(ix2+1,ix3)/( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2+1)*dx2iall(ix2+1)) )
      M(ient)=M(ient)+coeff    !d/dx2( Cm*v2*d^2/dx2^2(Phi) ) term

      coeff=-1d0*Cm(ix2,ix3+1)*v2(ix2,ix3+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3+1)+dx3all(ix3+2))*(dx2all(ix2)+dx2all(ix2+1)) )+ &
      (-1d0)*Cm(ix2,ix3-1)*v2(ix2,ix3-1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3-1)+dx3all(ix3))*(dx2all(ix2)+dx2all(ix2+1)) )
      M(ient)=M(ient)+coeff    !d/dx3( Cm*v2*d^2/dx3dx2(Phi) )

      ient=ient+1


      !ix2+2,ix3 grid point
      coeff=Cm(ix2+1,ix3)*v2(ix2+1,ix3)/( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2+2)*dx2iall(ix2+1)) )
      if (ix2==lx2-1) then
        b(iPhi)=b(iPhi)-coeff*Vmaxx2(ix3)
      else
        ir(ient)=iPhi
        ic(ient)=iPhi+2

        M(ient)=coeff    !d/dx2( Cm*v2*d^2/dx2^2(Phi) ) term

        ient=ient+1
      end if


      !ix2-2,ix3+1 grid point
      coeff=Cm(ix2-1,ix3)*v3(ix2-1,ix3)/ &
      ( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2-1)+dx2all(ix2))*(dx3all(ix3)+dx3all(ix3+1)) )
      if (ix2==2) then
        b(iPhi)=b(iPhi)-coeff*Vminx2(ix3+1)
      else
        ir(ient)=iPhi
        ic(ient)=iPhi+lx2-2

        M(ient)=coeff    !d/dx2( Cm*v3*d^2/dx2dx3(Phi) )

        ient=ient+1
      end if


      !!!ix2,ix3+1 grid point
      ir(ient)=iPhi
      ic(ient)=iPhi+lx2

      M(ient)=SigPh3(ix2,ix3+1)/(dx3iall(ix3)*dx3all(ix3+1))-gradSigH2(ix2,ix3)/(dx3all(ix3)+dx3all(ix3+1))    !static

      coeff=Cmh3(ix2,ix3+1)/(dt*dx3iall(ix3)*dx3all(ix3+1))
      M(ient)=M(ient)+coeff    !pol. time deriv.
      b(iPhi)=b(iPhi)+coeff*Phi0(ix2,ix3+1)    !BC's and pol. time deriv.

      coeff=-1d0*Cm(ix2,ix3+1)*v3(ix2,ix3+1)/( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3+2)*dx3iall(ix3+1)) )+ &
      (-1d0)*Cm(ix2,ix3+1)*v3(ix2,ix3+1)/( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3+1)*dx3iall(ix3+1)) )
      M(ient)=M(ient)+coeff    !d/dx3( Cm*v3*d^2/dx3^2(Phi) ) term

      coeff=-1d0*Cm(ix2+1,ix3)*v3(ix2+1,ix3)/ &
      ( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2+1)+dx2all(ix2+2))*(dx3all(ix3)+dx3all(ix3+1)) )+ &
      (-1d0)*Cm(ix2-1,ix3)*v3(ix2-1,ix3)/ &
      ( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2-1)+dx2all(ix2))*(dx3all(ix3)+dx3all(ix3+1)) )
      M(ient)=M(ient)+coeff    !d/dx2( Cm*v3*d^2/dx2dx3(Phi) )

      ient=ient+1


      !ix2+2,ix3+1 grid point
      coeff=Cm(ix2+1,ix3)*v3(ix2+1,ix3)/ &
      ( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2+1)+dx2all(ix2+2))*(dx3all(ix3)+dx3all(ix3+1)) )
      if (ix2==lx2-1) then
        b(iPhi)=b(iPhi)-coeff*Vmaxx2(ix3+1)
      else
        ir(ient)=iPhi
        ic(ient)=iPhi+lx2+2

        M(ient)=coeff    !d/dx2( Cm*v3*d^2/dx2dx3(Phi) )

        ient=ient+1
      end if


      !ix2-1,ix3+2 grid point
      coeff=-1d0*Cm(ix2,ix3+1)*v2(ix2,ix3+1)/ &
      ( (dx3all(ix3+1)+dx3all(ix3+2))*(dx3all(ix3)+dx3all(ix3+1))*(dx2all(ix2)+dx2all(ix2+1)) )
      if (ix3==lx3-1) then
        b(iPhi)=b(iPhi)-coeff*Vmaxx3(ix2-1)
      else
        ir(ient)=iPhi
        ic(ient)=iPhi+2*lx2-1

        M(ient)=coeff    !d/dx3( Cm*v2*d^2/dx3dx2(Phi) )

        ient=ient+1
      end if


      !ix2,ix3+2 grid point
      coeff=Cm(ix2,ix3+1)*v3(ix2,ix3+1)/( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3+2)*dx3iall(ix3+1)) )
      if (ix3==lx3-1) then
        b(iPhi)=b(iPhi)-coeff*Vmaxx3(ix2)
      else
        ir(ient)=iPhi
        ic(ient)=iPhi+2*lx2

        M(ient)=coeff    !d/dx2( Cm*v3*d^2/dx2dx3(Phi) )

        ient=ient+1
      end if


      !ix2+1,ix3+2 grid point
      coeff=Cm(ix2,ix3+1)*v2(ix2,ix3+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3+1)+dx3all(ix3+2))*(dx2all(ix2)+dx2all(ix2+1)) )
      if (ix3==lx3-1) then
        b(iPhi)=b(iPhi)-coeff*Vmaxx3(ix2+1)
      else
        ir(ient)=iPhi
        ic(ient)=iPhi+2*lx2+1

        M(ient)=coeff    !d/dx3( Cm*v2*d^2/dx3dx2(Phi) )

        ient=ient+1
      end if
    end if
  end do loopx2
end do loopx3
!end if


!FIRE UP MUMPS
!if (myid == 0) then
if (debug) print *, 'Filled ',ient-1,' matrix entries.  Initializing MUMPS...'
!end if
mumps_par%COMM = MPI_COMM_WORLD
mumps_par%JOB = -1
mumps_par%SYM = 0
mumps_par%PAR = 1

call MUMPS_exec(mumps_par)

call quiet_mumps(mumps_par)


!LOAD OUR PROBLEM
!if ( myid==0 ) then
mumps_par%N=lPhi
mumps_par%NZ=lent
allocate( mumps_par%IRN ( mumps_par%NZ ) )
allocate( mumps_par%JCN ( mumps_par%NZ ) )
allocate( mumps_par%A( mumps_par%NZ ) )
allocate( mumps_par%RHS ( mumps_par%N  ) )
mumps_par%IRN=ir
mumps_par%JCN=ic
mumps_par%A=M
mumps_par%RHS=b
deallocate(ir,ic,M,b)     !clear memory before solve begins!!!

if (perflag .and. it/=1) then       !used cached permutation
  allocate(mumps_par%PERM_IN(mumps_par%N))
  mumps_par%PERM_IN=mumps_perm
  mumps_par%ICNTL(7)=1
end if

!may solve some memory allocation issues, uncomment if MUMPS throws errors
!about not having enough memory
!mumps_par%ICNTL(14)=50
!end if


!SOLVE (ALL WORKERS NEED TO SEE THIS CALL)
mumps_par%JOB = 6

call MUMPS_exec(mumps_par)

call check_mumps_status(mumps_par, 'elliptic2D_polarization')

!STORE PERMUTATION USED, SAVE RESULTS, CLEAN UP MUMPS ARRAYS
!(can save ~25% execution time and improves scaling with openmpi
! ~25% more going from 1-2 processors)
!if ( myid==0 ) then
if (debug) print *, 'Now organizing results...'

if (perflag .and. it==1) then
  allocate(mumps_perm(mumps_par%N))     !we don't have a corresponding deallocate statement
  mumps_perm=mumps_par%SYM_PERM
end if

elliptic2D_polarization=reshape(mumps_par%RHS,[lx2,lx3])

if (debug) print *, 'Now attempting deallocations...'

deallocate( mumps_par%IRN )
deallocate( mumps_par%JCN )
deallocate( mumps_par%A   )
deallocate( mumps_par%RHS )
!end if

mumps_par%JOB = -2

call MUMPS_exec(mumps_par)

end procedure elliptic2D_polarization


module procedure elliptic2D_polarization_periodic

!------------------------------------------------------------
!-------SOLVE IONOSPHERIC POTENTIAL EQUATION IN 2D USING MUMPS
!-------INCLUDES FULL OF POLARIZATION CURRENT, INCLUDING CONVECTIVE
!-------TERMS.  VELOCITIES SHOULD BE TRIMMED (WITHOUT GHOST CELLS).
!-------THIS VERSION OF THE *INTEGRATED* POTENTIAL SOLVER OBVIATES
!-------ALL OTHERS SINCE A PURELY ELECTRSTATIC FORM CAN BE RECOVERED
!-------BY ZEROING OUT THE INERTIAL CAPACITANCE.
!-------
!-------THIS FORM IS INTENDED TO  WORK WITH CARTESIAN MESHES ONLY.
!-------NOTE THAT THE FULL GRID VARIABLES (X%DX3ALL, ETC.) MUST
!-------BE USED HERE!!!
!-------
!-------THIS FUNCTION WORKS ON A PERIODIC MESH BY USING A CIRCULANT MATRIX
!-------The equation solved by this subroutine is:
!-------
!-------  d/dx2(A dV/dx2) + d/dx3(A dV/dx3) + B dV/dx2 + C dV/x3 + ...
!-------  d/dx2(D d/dt(dV/dx2)) + d/dx3(D d/dt(dV/dx3)) + ...
!-------  d/dx2( D*v2 d^V/dx2^2 + D*v3*d^2V/dx3/dx2 ) + ...
!-------  d/dx3( D*v2 d^2V/dx2/dx3 + D*v3 d^2V/dx3^2 ) = srcterm
!------------------------------------------------------------

real(wp), dimension(1:size(SigP,1),1:size(SigP,2)) :: SigPh2
real(wp), dimension(1:size(SigP,1),1:size(SigP,2)) :: SigPh3
real(wp), dimension(1:size(SigP,1),1:size(SigP,2)) :: Cmh2
real(wp), dimension(1:size(SigP,1),1:size(SigP,2)) :: Cmh3

real(wp) :: coeff    !coefficient for calculating polarization terms
integer :: ix2,ix3,lx2,lx3    !this overwrites the values stored in the grid module, which is fine, but perhaps redundant
integer :: lPhi,lent
integer :: iPhi,ient
integer, dimension(:), allocatable :: ir,ic
real(wp), dimension(:), allocatable :: M
real(wp), dimension(:), allocatable :: b
real(wp) :: tstart,tfin

type(MUMPS_STRUC) :: mumps_par

integer :: lcount,ix2tmp,ix3tmp

real(wp), dimension(size(SigP,1),size(SigP,2)) :: tmpresults


!ONLY ROOT NEEDS TO ASSEMBLE THE MATRIX
!if (myid==0) then
lx2=size(SigP,1)    !these are full-grid sizes since grid module globals are not in scope
lx3=size(SigP,2)
lPhi=lx2*lx3
!      lent=5*(lx2-2)*(lx3-2)+2*lx2+2*(lx3-2)
!! static model
!      lent=17*(lx2-2)*(lx3A-2)+2*lx2+2*(lx3-2)-3*2*(lx2-2)-3*2*(lx3-2)
!! interior+boundary-x3_adj-x2_adj.  Note that are 3 sets of entries for each adjacent point.
!! The x3 adjacent points do not need to be removed in teh case of periodic boundary conditions.
!! This is technicall correct, but a bit misleading, I think.
!! Shouldn't it be lent=17*(lx2-2)*(lx3-2)+2*(lx2-2)+2*lx3-3*2*(lx2-2)-3*2*(lx3-2)???????
!      lent=17*(lx2-2)*(lx3+1-2)+2*(lx3+1)+3*(lx2-2)-3*2*(lx3+1-2)
!! true interior with x3 boundaries which are not treated as interior in periodic solves
!! + add x2 boundaries (note that these are now size lx3+1) + 3 entries for each x3 ghost cell that we are adding
!! - x2_adj (x2 is not periodici, two sets of three points each, note again the larger x3 size as compared to aperiodic solutions).
lent=17*(lx2-2)*(lx3-2)+2*(lx3)+17*2*(lx2-2)-3*2*lx3
!! true interior with x3 boundaries which are not treated as interior in periodic solves
!! + add x2 boundaries (note that these are now size lx3+1) + x3 edge cells (treated here as interior)
!! - x2_adj (x2 is not periodici, two sets of three points each, note again the larger x3 size as compared to aperiodic solutions).
allocate(ir(lent),ic(lent),M(lent),b(lPhi))

if (debug) print *, 'MUMPS will attempt a solve of size:  ',lx2,lx3
if (debug) print *, 'Total unknowns and nonzero entries in matrix:  ',lPhi,lent


!NOTE THAT THESE NEED TO BE PERIODIC IN X3
SigPh2(1,:)= 0
SigPh2(2:lx2,:)=0.5d0*(SigP(1:lx2-1,:)+SigP(2:lx2,:))
SigPh3(:,1)=0.5d0*(SigP(:,lx3)+SigP(:,1))    !needs to be left interface value so average of first and last grid point
SigPh3(:,2:lx3)=0.5d0*(SigP(:,1:lx3-1)+SigP(:,2:lx3))
Cmh2(1,:)= 0
Cmh2(2:lx2,:)=0.5d0*(Cm(1:lx2-1,:)+Cm(2:lx2,:))
Cmh3(:,1)=0.5d0*(Cm(:,lx3)+Cm(:,1))
Cmh3(:,2:lx3)=0.5d0*(Cm(:,1:lx3-1)+Cm(:,2:lx3))


!------------------------------------------------------------
!-------DEFINE A MATRIX USING SPARSE STORAGE (CENTRALIZED
!-------ASSEMBLED MATRIX INPUT, SEE SECTION 4.5 OF MUMPS USER
!-------GUIDE).
!------------------------------------------------------------
if (debug) print *, 'Loading up matrix entries...'

!LOAD UP MATRIX ELEMENTS
lcount=0
M(:)= 0
b=pack(srcterm,.true.)           !boundaries overwritten later, polarization terms also added later.
ient=1
do ix3=1,lx3
!! note that we have one extra ghost cell now to deal with due to the way we've chosen to implement periodic boundary conditions
  do ix2=1,lx2
    iPhi=lx2*(ix3-1)+ix2
    !! linear index referencing Phi(ix2,ix3) as a column vector.  Also row of big matrix

    if (ix2==1) then
      !! BOTTOM GRID POINTS + CORNER
      ir(ient)=iPhi
      ic(ient)=iPhi
      M(ient)=1d0
      b(iPhi)=Vminx2(ix3)
      ient=ient+1
    elseif (ix2==lx2) then
      !! TOP GRID POINTS + CORNER
      ir(ient)=iPhi
      ic(ient)=iPhi
      M(ient)=1d0
      b(iPhi)=Vmaxx2(ix3)
      ient=ient+1
    else
      !! TREAT AS AN INTERIOR LOCATION, THIS INCLUDE X3 EDGES NOW SINCE PERIODIC,CIRCULANT


      !! ZZZ - NEED TO WRAP INDICES AROUND:  X 1)
      !! matrix row/column entries; 2) references to dx3i*(anything but ix3);  3) references to conductances/bcs/etc.

      !ix2-1,ix3-2 grid point
      coeff=-1d0*Cm(ix2,mod(ix3-1-1+lx3,lx3)+1)*v2(ix2,mod(ix3-1-1+lx3,lx3)+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3-1)+dx3all(ix3))*(dx2all(ix2)+dx2all(ix2+1)) )
      ir(ient)=iPhi
      ix3tmp=mod(ix3-2-1+lx3,lx3)+1
      ix2tmp=ix2-1
      ic(ient)=lx2*(ix3tmp-1)+ix2tmp
      !              ic(ient)=iPhi-2*lx2-1+lPhi-1
      !! add the grid size to wrap the index around (would be negative otherwise),
      !! -1 at end because the last grid opint is actually the same as the first for our implementation
      !            else
      !              ic(ient)=iPhi-2*lx2-1
      !            end if
      M(ient)=coeff    !d/dx3( Cm*v2*d^2/dx3dx2(Phi) )
      ient=ient+1


      !ix2,ix3-2 grid point
      coeff=-1d0*Cm(ix2,mod(ix3-1-1+lx3,lx3)+1)*v3(ix2,mod(ix3-1-1+lx3,lx3)+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3-1)* &
      dx3iall(mod(ix3-1-1+lx3,lx3)+1)) )
      ir(ient)=iPhi
      ix3tmp=mod(ix3-2-1+lx3,lx3)+1
      ix2tmp=ix2
      ic(ient)=lx2*(ix3tmp-1)+ix2tmp
      !              ic(ient)=iPhi-2*lx2+lPhi-1    !again add grid size to wrap to end
      !            else
      !              ic(ient)=iPhi-2*lx2
      !            end if
      M(ient)=coeff    !d/dx3( Cm*v3*d^2/dx3^2(Phi) ) term
      ient=ient+1


      !ix2+1,ix3-2 grid point
      coeff=Cm(ix2,mod(ix3-1-1+lx3,lx3)+1)*v2(ix2,mod(ix3-1-1+lx3,lx3)+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3-1)+dx3all(ix3))*(dx2all(ix2)+dx2all(ix2+1)) )
      ir(ient)=iPhi
      ix3tmp=mod(ix3-2-1+lx3,lx3)+1
      ix2tmp=ix2+1
      ic(ient)=lx2*(ix3tmp-1)+ix2tmp
      M(ient)=coeff    !d/dx3( Cm*v2*d^2/dx3dx2(Phi) )
      ient=ient+1


      !ix2-2,ix3-1
      coeff=-1d0*Cm(ix2-1,ix3)*v3(ix2-1,ix3)/ &
      ( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2-1)+dx2all(ix2))*(dx3all(ix3)+dx3all(ix3+1)) )
      if (ix2==2) then
        b(iPhi)=b(iPhi)-coeff*Vminx2(mod(ix3-1-1+lx3,lx3)+1)
      else
        ir(ient)=iPhi
        ix3tmp=mod(ix3-1-1+lx3,lx3)+1
        ix2tmp=ix2-2
        ic(ient)=lx2*(ix3tmp-1)+ix2tmp
        !              ic(ient)=iPhi-lx2-2

        M(ient)=coeff    !d/dx2( Cm*v3*d^2/dx2dx3(Phi) )

        ient=ient+1
      end if


      !ix2,ix3-1 grid point in ix2,ix3 equation
      ir(ient)=iPhi
      !            ic(ient)=iPhi-lx2
      ix3tmp=mod(ix3-1-1+lx3,lx3)+1
      ix2tmp=ix2
      ic(ient)=lx2*(ix3tmp-1)+ix2tmp

      M(ient)=SigPh3(ix2,ix3)/(dx3iall(ix3)*dx3all(ix3))+gradSigH2(ix2,ix3)/(dx3all(ix3)+dx3all(ix3+1))    !static terms

      coeff=Cmh3(ix2,ix3)/(dt*dx3iall(ix3)*dx3all(ix3))
      M(ient)=M(ient)+coeff   !polarization time derivative terms
      b(iPhi)=b(iPhi)+coeff*Phi0(ix2,mod(ix3-1-1+lx3,lx3)+1)
      !! add in polarziation terms that include previous time step potential at this grid point

      coeff=Cm(ix2,mod(ix3-1-1+lx3,lx3)+1)*v3(ix2,mod(ix3-1-1+lx3,lx3)+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3)*dx3iall(mod(ix3-1-1+lx3,lx3)+1)) )+ &
      Cm(ix2,mod(ix3-1-1+lx3,lx3)+1)*v3(ix2,mod(ix3-1-1+lx3,lx3)+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3-1)*dx3iall(mod(ix3-1-1+lx3,lx3)+1)) )
      M(ient)=M(ient)+coeff   !d/dx3( Cm*v3*d^2/dx3^2(Phi) ) term

      coeff=Cm(ix2+1,ix3)*v3(ix2+1,ix3)/ &
      ( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2+1)+dx2all(ix2+2))*(dx3all(ix3)+dx3all(ix3+1)) )+ &
      Cm(ix2-1,ix3)*v3(ix2-1,ix3)/ &
      ( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2-1)+dx2all(ix2))*(dx3all(ix3)+dx3all(ix3+1)) )
      M(ient)=M(ient)+coeff   !d/dx2( Cm*v3*d^2/dx2dx3(Phi) )

      ient=ient+1


      !ix2+2,ix3-1 grid point
      coeff=-1d0*Cm(ix2+1,ix3)*v3(ix2+1,ix3)/ &
      ( (dx2all(ix2+1)+dx2all(ix2+2))*(dx2all(ix2)+dx2all(ix2+1))*(dx3all(ix3)+dx3all(ix3+1)) )
      if (ix2==lx2-1) then
        b(iPhi)=b(iPhi)-coeff*Vmaxx2(mod(ix3-1-1+lx3,lx3)+1)
      else
        ir(ient)=iPhi
        !              ic(ient)=iPhi-lx2+2
        ix3tmp=mod(ix3-1-1+lx3,lx3)+1
        ix2tmp=ix2+2
        ic(ient)=lx2*(ix3tmp-1)+ix2tmp

        M(ient)=coeff    !d/dx2( Cm*v3*d^2/dx2dx3(Phi) )

        ient=ient+1
      end if


      !ix2-2,ix3 grid point
      coeff=-1d0*Cm(ix2-1,ix3)*v2(ix2-1,ix3)/( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2-1)*dx2iall(ix2-1)) )
      if (ix2==2) then
        b(iPhi)=b(iPhi)-coeff*Vminx2(ix3)
      else
        ir(ient)=iPhi
        ic(ient)=iPhi-2

        M(ient)=coeff    !d/dx2( Cm*v2*d^2/dx2^2(Phi) ) term

        ient=ient+1
      end if


      !ix2-1,ix3 grid point
      ir(ient)=iPhi
      ic(ient)=iPhi-1

      M(ient)=SigPh2(ix2,ix3)/(dx2iall(ix2)*dx2all(ix2))-gradSigH3(ix2,ix3)/(dx2all(ix2)+dx2all(ix2+1))    !static

      coeff=Cmh2(ix2,ix3)/(dt*dx2iall(ix2)*dx2all(ix2))
      M(ient)=M(ient)+coeff    !pol. time deriv.
      b(iPhi)=b(iPhi)+coeff*Phi0(ix2-1,ix3)    !BC's and pol. time deriv.

      coeff=Cm(ix2-1,ix3)*v2(ix2-1,ix3)/( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2)*dx2iall(ix2-1)) )+ &
      Cm(ix2-1,ix3)*v2(ix2-1,ix3)/( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2-1)*dx2iall(ix2-1)) )
      M(ient)=M(ient)+coeff    !d/dx2( Cm*v2*d^2/dx2^2(Phi) ) term

      coeff=Cm(ix2,mod(ix3+1-1,lx3)+1)*v2(ix2,mod(ix3+1-1,lx3)+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3+1)+dx3all(ix3+2))*(dx2all(ix2)+dx2all(ix2+1)) )+ &
      Cm(ix2,mod(ix3-1-1+lx3,lx3)+1)*v2(ix2,mod(ix3-1-1+lx3,lx3)+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3-1)+dx3all(ix3))*(dx2all(ix2)+dx2all(ix2+1)) )
      M(ient)=M(ient)+coeff     !d/dx3( Cm*v2*d^2/dx3dx2(Phi) )

      ient=ient+1


      !ix2,ix3 grid point (main diagonal)
      ir(ient)=iPhi
      ic(ient)=iPhi

      M(ient)=-1d0*SigPh2(ix2+1,ix3)/(dx2iall(ix2)*dx2all(ix2+1)) &
      -1d0*SigPh2(ix2,ix3)/(dx2iall(ix2)*dx2all(ix2)) &
      -1d0*SigPh3(ix2,mod(ix3+1-1,lx3)+1)/(dx3iall(ix3)*dx3all(ix3+1)) &
      -1d0*SigPh3(ix2,ix3)/(dx3iall(ix3)*dx3all(ix3))    !static

      coeff=-1d0*Cmh2(ix2+1,ix3)/(dt*dx2iall(ix2)*dx2all(ix2+1)) &
      -1d0*Cmh2(ix2,ix3)/(dt*dx2iall(ix2)*dx2all(ix2)) &
      -1d0*Cmh3(ix2,mod(ix3+1-1,lx3)+1)/(dt*dx3iall(ix3)*dx3all(ix3+1)) &
      -1d0*Cmh3(ix2,ix3)/(dt*dx3iall(ix3)*dx3all(ix3))
      M(ient)=M(ient)+coeff    !pol. time deriv.
      b(iPhi)=b(iPhi)+coeff*Phi0(ix2,ix3)    !BC's and pol. time deriv.

      coeff=Cm(ix2+1,ix3)*v2(ix2+1,ix3)/( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2+1)*dx2iall(ix2+1)) )+ &
      (-1d0)*Cm(ix2-1,ix3)*v2(ix2-1,ix3)/( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2)*dx2iall(ix2-1)) )
      M(ient)=M(ient)+coeff    !d/dx2( Cm*v2*d^2/dx2^2(Phi) ) term

      coeff=Cm(ix2,mod(ix3+1-1,lx3)+1)*v3(ix2,mod(ix3+1-1,lx3)+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3+1)*dx3all(ix3+1)) )+ &
      (-1d0)*Cm(ix2,mod(ix3-1-1+lx3,lx3)+1)*v3(ix2,mod(ix3-1-1+lx3,lx3)+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3)*dx3iall(mod(ix3-1-1+lx3,lx3)+1)) )
      M(ient)=M(ient)+coeff    !d/dx3( Cm*v3*d^2/dx3^2(Phi) ) term

      ient=ient+1


      !ix2+1,ix3 grid point
      ir(ient)=iPhi
      ic(ient)=iPhi+1

      M(ient)=SigPh2(ix2+1,ix3)/(dx2iall(ix2)*dx2all(ix2+1))+gradSigH3(ix2,ix3)/(dx2all(ix2)+dx2all(ix2+1))    !static

      coeff=Cmh2(ix2+1,ix3)/(dt*dx2iall(ix2)*dx2all(ix2+1))
      M(ient)=M(ient)+coeff    !pol. time deriv. terms
      b(iPhi)=b(iPhi)+coeff*Phi0(ix2+1,ix3)    !BC's and pol. time deriv.

      coeff=-1d0*Cm(ix2+1,ix3)*v2(ix2+1,ix3)/( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2+2)*dx2iall(ix2+1)) )+ &
      (-1d0)*Cm(ix2+1,ix3)*v2(ix2+1,ix3)/( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2+1)*dx2iall(ix2+1)) )
      M(ient)=M(ient)+coeff    !d/dx2( Cm*v2*d^2/dx2^2(Phi) ) term

      coeff=-1d0*Cm(ix2,mod(ix3+1-1,lx3)+1)*v2(ix2,mod(ix3+1-1,lx3)+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3+1)+dx3all(ix3+2))*(dx2all(ix2)+dx2all(ix2+1)) )+ &
      (-1d0)*Cm(ix2,mod(ix3-1-1+lx3,lx3)+1)*v2(ix2,mod(ix3-1-1+lx3,lx3)+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3-1)+dx3all(ix3))*(dx2all(ix2)+dx2all(ix2+1)) )
      M(ient)=M(ient)+coeff    !d/dx3( Cm*v2*d^2/dx3dx2(Phi) )

      ient=ient+1


      !ix2+2,ix3 grid point
      coeff=Cm(ix2+1,ix3)*v2(ix2+1,ix3)/( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2+2)*dx2iall(ix2+1)) )
      if (ix2==lx2-1) then
        b(iPhi)=b(iPhi)-coeff*Vmaxx2(ix3)
      else
        ir(ient)=iPhi
        ic(ient)=iPhi+2

        M(ient)=coeff    !d/dx2( Cm*v2*d^2/dx2^2(Phi) ) term

        ient=ient+1
      end if


      !ix2-2,ix3+1 grid point
      coeff=Cm(ix2-1,ix3)*v3(ix2-1,ix3)/ &
      ( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2-1)+dx2all(ix2))*(dx3all(ix3)+dx3all(ix3+1)) )
      if (ix2==2) then
        b(iPhi)=b(iPhi)-coeff*Vminx2(mod(ix3+1-1,lx3)+1)
      else
        ir(ient)=iPhi
        !              ic(ient)=iPhi+lx2-2
        ix3tmp=mod(ix3+1-1,lx3)+1
        ix2tmp=ix2-2
        ic(ient)=lx2*(ix3tmp-1)+ix2tmp

        M(ient)=coeff    !d/dx2( Cm*v3*d^2/dx2dx3(Phi) )

        ient=ient+1
      end if


      !ix2,ix3+1 grid point
      ir(ient)=iPhi
      !            ic(ient)=iPhi+lx2
      ix3tmp=mod(ix3+1-1,lx3)+1
      ix2tmp=ix2
      ic(ient)=lx2*(ix3tmp-1)+ix2tmp

      M(ient)=SigPh3(ix2,mod(ix3+1-1,lx3)+1)/ &
      (dx3iall(ix3)*dx3all(ix3+1))-gradSigH2(ix2,ix3)/(dx3all(ix3)+dx3all(ix3+1))    !static

      coeff=Cmh3(ix2,mod(ix3+1-1,lx3)+1)/(dt*dx3iall(ix3)*dx3all(ix3+1))
      M(ient)=M(ient)+coeff    !pol. time deriv.
      b(iPhi)=b(iPhi)+coeff*Phi0(ix2,mod(ix3+1-1,lx3)+1)    !BC's and pol. time deriv.

      coeff=-1d0*Cm(ix2,mod(ix3+1-1,lx3)+1)*v3(ix2,mod(ix3+1-1,lx3)+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3+2)*dx3iall(mod(ix3+1-1,lx3)+1)) )+ &
      (-1d0)*Cm(ix2,mod(ix3+1-1,lx3)+1)*v3(ix2,mod(ix3+1-1,lx3)+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3+1)*dx3iall(mod(ix3+1-1,lx3)+1)) )
      M(ient)=M(ient)+coeff    !d/dx3( Cm*v3*d^2/dx3^2(Phi) ) term

      coeff=-1d0*Cm(ix2+1,ix3)*v3(ix2+1,ix3)/ &
      ( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2+1)+dx2all(ix2+2))*(dx3all(ix3)+dx3all(ix3+1)) )+ &
      (-1d0)*Cm(ix2-1,ix3)*v3(ix2-1,ix3)/ &
      ( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2-1)+dx2all(ix2))*(dx3all(ix3)+dx3all(ix3+1)) )
      M(ient)=M(ient)+coeff    !d/dx2( Cm*v3*d^2/dx2dx3(Phi) )

      ient=ient+1


      !ix2+2,ix3+1 grid point
      coeff=Cm(ix2+1,ix3)*v3(ix2+1,ix3)/ &
      ( (dx2all(ix2)+dx2all(ix2+1))*(dx2all(ix2+1)+dx2all(ix2+2))*(dx3all(ix3)+dx3all(ix3+1)) )
      if (ix2==lx2-1) then
        b(iPhi)=b(iPhi)-coeff*Vmaxx2(mod(ix3+1-1,lx3)+1)
      else
        ir(ient)=iPhi
        !              ic(ient)=iPhi+lx2+2
        ix3tmp=mod(ix3+1-1,lx3)+1
        ix2tmp=ix2+2
        ic(ient)=lx2*(ix3tmp-1)+ix2tmp

        M(ient)=coeff    !d/dx2( Cm*v3*d^2/dx2dx3(Phi) )

        ient=ient+1
      end if


      !ix2-1,ix3+2 grid point
      !            coeff=-1d0*Cm(ix2,ix3+1)*v2(ix2,ix3+1)/ &
      !                  ( (dx3all(ix3+1)+dx3all(ix3+2))*(dx3all(ix3)+dx3all(ix3+1))*(dx2all(ix2)+dx2all(ix2+1)) )
      coeff=-1d0*Cm(ix2,mod(ix3+1-1,lx3)+1)*v2(ix2,mod(ix3+1-1,lx3)+1)/ &      !mods to wrap indices around
      ( (dx3all(ix3+1)+dx3all(ix3+2))*(dx3all(ix3)+dx3all(ix3+1))*(dx2all(ix2)+dx2all(ix2+1)) )
      ir(ient)=iPhi
      !            if (ix3>=lx3-1) then    !this needs to also handle the case where ix3=lx3!!!  Likewise for statements that follow...
      ix3tmp=mod(ix3+2-1,lx3)+1
      ix2tmp=ix2-1
      ic(ient)=lx2*(ix3tmp-1)+ix2tmp
      !              ic(ient)=iPhi+2*lx2-1-lPhi+1    !wrap to beginning
      !            else
      !              ic(ient)=iPhi+2*lx2-1
      !            end if
      M(ient)=coeff    !d/dx3( Cm*v2*d^2/dx3dx2(Phi) )
      ient=ient+1


      !ix2,ix3+2 grid point
      !            coeff=Cm(ix2,ix3+1)*v3(ix2,ix3+1)/ &
      !                  ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3+2)*dx3iall(ix3+1)) )
      coeff=Cm(ix2,mod(ix3+1-1,lx3)+1)*v3(ix2,mod(ix3+1-1,lx3)+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3+2)*dx3iall(mod(ix3+1-1,lx3)+1)) )
      ir(ient)=iPhi
      !            if (ix3>=lx3-1) then
      ix3tmp=mod(ix3+2-1,lx3)+1
      ix2tmp=ix2
      ic(ient)=lx2*(ix3tmp-1)+ix2tmp
      !              ic(ient)=iPhi+2*lx2-lPhi+1    !substract grid size to wrap around to the beginning
      !            else
      !              ic(ient)=iPhi+2*lx2
      !            end if
      M(ient)=coeff    !d/dx2( Cm*v3*d^2/dx2dx3(Phi) )
      ient=ient+1


      !ix2+1,ix3+2 grid point
      !            coeff=Cm(ix2,ix3+1)*v2(ix2,ix3+1)/ &
      !                  ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3+1)+dx3all(ix3+2))*(dx2all(ix2)+dx2all(ix2+1)) )
      coeff=Cm(ix2,mod(ix3+1-1,lx3)+1)*v2(ix2,mod(ix3+1-1,lx3)+1)/ &
      ( (dx3all(ix3)+dx3all(ix3+1))*(dx3all(ix3+1)+dx3all(ix3+2))*(dx2all(ix2)+dx2all(ix2+1)) )
      ir(ient)=iPhi
      !            if (ix3>=lx3-1) then     !this should actually work for any case...
      ix3tmp=mod(ix3+2-1,lx3)+1
      ix2tmp=ix2+1
      ic(ient)=lx2*(ix3tmp-1)+ix2tmp
      !              ic(ient)=iPhi+2*lx2+1-lPhi+1
      !            else
      !              ic(ient)=iPhi+2*lx2+1
      !            end if
      M(ient)=coeff    !d/dx3( Cm*v2*d^2/dx3dx2(Phi) )
      ient=ient+1
    end if
  end do
end do
!end if


!FIRE UP MUMPS
!if (myid == 0) then
if (debug) print *,  'Debug count:  ',lcount
if (debug) print *, 'Filled ',ient-1,' out of ',lent,' matrix entries for solving ',iPhi,' of ',lPhi, &
' unknowns.  Initializing MUMPS...'
if (ient-1 /= lent) error stop 'Incorrect number of matrix entries filled in potential solve!!!'

!end if
mumps_par%COMM = MPI_COMM_WORLD
mumps_par%JOB = -1
mumps_par%SYM = 0
mumps_par%PAR = 1

call MUMPS_exec(mumps_par)

call quiet_mumps(mumps_par)


!LOAD OUR PROBLEM
!if ( myid==0 ) then
mumps_par%N=lPhi
mumps_par%NZ=lent
allocate( mumps_par%IRN ( mumps_par%NZ ) )
allocate( mumps_par%JCN ( mumps_par%NZ ) )
allocate( mumps_par%A( mumps_par%NZ ) )
allocate( mumps_par%RHS ( mumps_par%N  ) )
mumps_par%IRN=ir
mumps_par%JCN=ic
mumps_par%A=M
mumps_par%RHS=b
deallocate(ir,ic,M,b)     !clear memory before solve begins!!!

if (perflag .and. it/=1) then       !used cached permutation
  allocate(mumps_par%PERM_IN(mumps_par%N))
  mumps_par%PERM_IN=mumps_perm
  mumps_par%ICNTL(7)=1
end if

!mumps_par%ICNTL(14)=50
!end if


!SOLVE (ALL WORKERS NEED TO SEE THIS CALL)
mumps_par%JOB = 6

call MUMPS_exec(mumps_par)

call check_mumps_status(mumps_par, 'elliptic2D_polarization_periodic')

!STORE PERMUTATION USED, SAVE RESULTS, CLEAN UP MUMPS ARRAYS
!(can save ~25% execution time and improves scaling with openmpi
! ~25% more going from 1-2 processors)
!if ( myid==0 ) then
if (debug) print *, 'Now organizing results...'

if (perflag .and. it==1) then
  allocate(mumps_perm(mumps_par%N))     !we don't have a corresponding deallocate statement
  mumps_perm=mumps_par%SYM_PERM
end if

!IF WE HAVE DONE A PERIODIC SOLVE, THE LAST GRID POINT NEEDS TO BE IGNORED WHEN WE RESHAPE THE POTENTIAL ARRAY.

tmpresults=reshape(mumps_par%RHS,[lx2,lx3])
elliptic2D_polarization_periodic=tmpresults(1:lx2,1:lx3)    !sort of superfluous now that hte solve size is the same as the grid

if (debug) print *, 'Now attempting deallocations...'

deallocate( mumps_par%IRN )
deallocate( mumps_par%JCN )
deallocate( mumps_par%A   )
deallocate( mumps_par%RHS )
!end if

mumps_par%JOB = -2

call MUMPS_exec(mumps_par)

end procedure elliptic2D_polarization_periodic


module procedure elliptic2D_cart
!! SOLVE IONOSPHERIC POTENTIAL EQUATION IN 2D USING MUMPS.
!!
!! ASSUME THAT:
!! * WE ARE RESOLVING THE POTENTIAL ALONG THE FIELD LINE
!! * POTENTIAL VARIES IN X1 AND X3. X2 IS NOMINALLY JUST ONE ELEMENT.
!! * LEFT AND RIGHT BOUNDARIES (IN X3) USE DIRICHLET BOUNARY CONDITIONS
!! * TOP (ALTITUDE) CAN BE NEUMANN OR DIRICHLET.
!! * BOTTOM (ALTITUDE) IS ALWAYS DIRICHLET.
!!
!! This subroutine solves equations of the form:
!!
!!    d/dx1(sig0 dV/dx1) + d/dx3(sigP dV/dx3) = srcterm


real(wp), dimension(1:size(sig0,1),1:size(sig0,3)) :: sig0h1
real(wp), dimension(1:size(sigP,1),1:size(sigP,3)) :: sigPh3

integer :: ix1,ix3,lx1,lx3
integer :: lPhi,lent
integer :: iPhi,ient
integer, dimension(:), allocatable :: ir,ic
real(wp), dimension(:), allocatable :: M
real(wp), dimension(:), allocatable :: b
real(wp) :: tstart,tfin

type(MUMPS_STRUC) :: mumps_par

!ONLY ROOT NEEDS TO ASSEMBLE THE MATRIX
!if (myid==0) then
lx1=size(sig0,1)
lx3=size(sig0,3)
lPhi=lx1*lx3
if (flagdirich==0) then
  lent=5*(lx1-2)*(lx3-2)+2*lx1+2*(lx3-2)+2*lx3    !first +1 for Neumann bottom, second for Neumann top
else
  !        lent=5*(lx1-2)*(lx3-2)+2*lx1+2*(lx3-2)+1    !first +1 for Neumann bottom
  lent=5*(lx1-2)*(lx3-2)+2*(lx1-2)+2*lx3+lx3
end if
allocate(ir(lent),ic(lent),M(lent),b(lPhi))

if (debug) print *, 'MUMPS will attempt a solve of size:  ',lx1,lx3
if (debug) print *, 'Total unknowns and nonzero entries in matrix:  ',lPhi,lent


!AVERAGE CONDUCTANCES TO THE GRID INTERFACE POINTS
sig0h1(1,:)=0
sig0h1(2:lx1,:)=0.5d0*(sig0(1:lx1-1,1,:)+sig0(2:lx1,1,:))
sigPh3(:,1)=0
sigPh3(:,2:lx3)=0.5d0*(sigP(:,1,1:lx3-1)+sigP(:,1,2:lx3))

!------------------------------------------------------------
!-------DEFINE A MATRIX USING SPARSE STORAGE (CENTRALIZED
!-------ASSEMBLED MATRIX INPUT, SEE SECTION 4.5 OF MUMPS USER
!-------GUIDE).
!------------------------------------------------------------

!LOAD UP MATRIX ELEMENTS
M(:)=0
b=pack(srcterm,.true.)           !boundaries overwritten later
ient=1
do ix3=1,lx3
  do ix1=1,lx1
    iPhi=lx1*(ix3-1)+ix1     !linear index referencing Phi(ix1,ix3) as a column vector.  Also row of big matrix

    if (ix1==1) then
    !! (LOGICAL) BOTTOM GRID POINTS + CORNER, USE NEUMANN HERE, PRESUMABLY ZERO.
    !! ZZZ - potential problem here if we have inverted grid...
      if (gridflag/=1) then
        ir(ient)=iPhi
        ic(ient)=iPhi
        M(ient)=-1d0
        ient=ient+1
        ir(ient)=iPhi
        ic(ient)=iPhi+1
        M(ient)=1d0
        !            b(iPhi)=Vminx1(ix3)
        b(iPhi)= 0    !force bottom current to zero
        ient=ient+1
      else
        if (flagdirich/=0) then    !ZZZ - need to check non-inverted???
          ir(ient)=iPhi
          ic(ient)=iPhi
          M(ient)=1
          b(iPhi)=Vmaxx1(1,ix3)
          ient=ient+1
        else
          ir(ient)=iPhi
          ic(ient)=iPhi-1
          M(ient)=-1d0/dx1(lx1)
          ient=ient+1
          ir(ient)=iPhi
          ic(ient)=iPhi
          M(ient)=1d0/dx1(lx1)
          b(iPhi)=Vmaxx1(1,ix3)
          ient=ient+1
        end if
      end if
    elseif (ix1==lx1) then    !(LOGICAL) TOP GRID POINTS + CORNER
      if (gridflag/=1) then    !non-inverted?
        if (flagdirich/=0) then    !ZZZ - need to check non-inverted???
          ir(ient)=iPhi
          ic(ient)=iPhi
          M(ient)=1d0
          b(iPhi)=Vmaxx1(1,ix3)
          ient=ient+1
        else
          ir(ient)=iPhi
          ic(ient)=iPhi-1
          M(ient)=-1d0/dx1(lx1)
          ient=ient+1
          ir(ient)=iPhi
          ic(ient)=iPhi
          M(ient)=1d0/dx1(lx1)
          b(iPhi)=Vmaxx1(1,ix3)
          ient=ient+1
        end if
      else
        ir(ient)=iPhi
        ic(ient)=iPhi
        M(ient)=-1d0
        ient=ient+1
        ir(ient)=iPhi
        ic(ient)=iPhi+1
        M(ient)=1d0
        !            b(iPhi)=Vminx1(ix3)
        b(iPhi)=0
        !! force bottom current to zero
        ient=ient+1
      end if
    elseif (ix3==1) then      !LEFT BOUNDARY
      ir(ient)=iPhi
      ic(ient)=iPhi
      M(ient)=1.0
      b(iPhi)=Vminx3(ix1,1)
      ient=ient+1
    elseif (ix3==lx3) then    !RIGHT BOUNDARY
      ir(ient)=iPhi
      ic(ient)=iPhi
      M(ient)=1.0
      b(iPhi)=Vmaxx3(ix1,1)
      ient=ient+1
    else                      !INTERIOR
      !ix1,ix3-1 grid point in ix1,ix3 equation
      ir(ient)=iPhi
      ic(ient)=iPhi-lx1
      M(ient)=sigPh3(ix1,ix3)/(dx3iall(ix3)*dx3all(ix3))
      ient=ient+1

      !ix1-1,ix3 grid point
      ir(ient)=iPhi
      ic(ient)=iPhi-1
      M(ient)=sig0h1(ix1,ix3)/(dx1i(ix1)*dx1(ix1))
      ient=ient+1

      !ix1,ix3 grid point
      ir(ient)=iPhi
      ic(ient)=iPhi
      M(ient)=-1d0*sig0h1(ix1+1,ix3)/(dx1i(ix1)*dx1(ix1+1)) &
      -1d0*sig0h1(ix1,ix3)/(dx1i(ix1)*dx1(ix1)) &
      -1d0*sigPh3(ix1,ix3+1)/(dx3iall(ix3)*dx3all(ix3+1)) &
      -1d0*sigPh3(ix1,ix3)/(dx3iall(ix3)*dx3all(ix3))
      ient=ient+1

      !ix1+1,ix3 grid point
      ir(ient)=iPhi
      ic(ient)=iPhi+1
      M(ient)=sig0h1(ix1+1,ix3)/(dx1i(ix1)*dx1(ix1+1))
      ient=ient+1

      !ix1,ix3+1 grid point
      ir(ient)=iPhi
      ic(ient)=iPhi+lx1
      M(ient)=sigPh3(ix1,ix3+1)/(dx3iall(ix3)*dx3all(ix3+1))
      ient=ient+1
    end if
  end do
end do
!end if
if (debug) print *, 'Number of entries used:  ',ient-1


!FIRE UP MUMPS
mumps_par%COMM = MPI_COMM_WORLD
mumps_par%JOB = -1
mumps_par%SYM = 0
mumps_par%PAR = 1

call MUMPS_exec(mumps_par)

call quiet_mumps(mumps_par)


!LOAD OUR PROBLEM
!if ( myid==0 ) then
mumps_par%N=lPhi
mumps_par%NZ=lent
allocate( mumps_par%IRN ( mumps_par%NZ ) )
allocate( mumps_par%JCN ( mumps_par%NZ ) )
allocate( mumps_par%A( mumps_par%NZ ) )
allocate( mumps_par%RHS ( mumps_par%N  ) )
mumps_par%IRN=ir
mumps_par%JCN=ic
mumps_par%A=M
mumps_par%RHS=b
deallocate(ir,ic,M,b)     !clear memory before solve begins!!!

if (perflag .and. it/=1) then       !used cached permutation
  if (debug) print *, 'Using a previously stored permutation'
  allocate(mumps_par%PERM_IN(mumps_par%N))
  mumps_par%PERM_IN = mumps_perm
  mumps_par%ICNTL(7) = 1
end if

!may solve some memory allocation issues, uncomment if MUMPS throws errors
!about not having enough memory
! e.g. INFO(1) = -9
! however this error may also mean there is a deeper problem with the code.
!,mumps_par%ICNTL(14) = 50
!end if


!> SOLVE (ALL WORKERS NEED TO SEE THIS CALL)
mumps_par%JOB = 6

call MUMPS_exec(mumps_par)

call check_mumps_status(mumps_par, 'elliptic2D_cart')

!STORE PERMUTATION USED, SAVE RESULTS, CLEAN UP MUMPS ARRAYS
!(can save ~25% execution time and improves scaling with openmpi
! ~25% more going from 1-2 processors).  WOW - this halves execution
! time on some big 2048*2048 solves!!!
!if ( myid==0 ) then
if (debug) print *, 'Now organizing results...'

if (perflag .and. it==1) then
  if (debug) print *, 'Storing ordering for future time step use...'
  allocate(mumps_perm(mumps_par%N))     !we don't have a corresponding deallocate statement
  mumps_perm=mumps_par%SYM_PERM
end if

elliptic2D_cart=reshape(mumps_par%RHS,[lx1,1,lx3])

if (debug) print *, 'Now attempting deallocations...'

deallocate( mumps_par%IRN )
deallocate( mumps_par%JCN )
deallocate( mumps_par%A   )
deallocate( mumps_par%RHS )
!end if

mumps_par%JOB = -2

call MUMPS_exec(mumps_par)

end procedure elliptic2D_cart


end submodule elliptic2d